赵春江院士:智慧农业的发展现状与未来展望
随着第四次工业革命的快速发展,信息科学技术和多领域科学技术深度融合,诱发新的产业技术革命。新一代信息科技与农业的深度融合发展,孕育了第三次农业绿色革命——农业的数字革命,使农业进入了网络化、数字化、智能化发展的新时代。在农业数字革命的推动下,世界农业产生了两大变革:一是产生了以智慧农业为代表的新型农业生产方式,让农业生产更加“智慧”、更加“聪明”;二是促进了农业数字经济发展,激活了“数据要素”的价值潜能,赋能数字农业农村新发展。已有研究表明,智慧农业是以信息、知识与装备为核心要素的现代农业生产方式,是现代农业科技竞争的制高点,也是现代农业发展的重要方向。针对现有研究关于智慧农业科学内涵阐释不深刻、国内外智慧农业前沿科技动态把握不全面、未来我国智慧农业发展政策针对性不强等问题,本文拟从系统工程角度对智慧农业内涵进行理论阐释,进一步结合文献深度剖析国内外智慧农业核心关键技术前沿进展,提出未来智慧农业发展的总体布局,为今后一段时期我国智慧农业发展提供方向性指导。
智慧农业的内涵与特征
1.智慧农业的内涵
智慧农业的概念
迄今为止,学术界尚未对智慧农业作出一个确切的定义,一般根据智慧农业的实质内容或应用场景,将其描述为以信息和知识为核心要素,通过现代信息技术和智能装备等与农业深度跨界融合,实现农业生产全过程的信息感知、定量决策、智能控制、精准投入、个性化服务的全新农业生产方式,并且认为智慧农业是农业信息化发展从数字化到网络化再到智能化的高级阶段。
智慧农业相关名词
目前,学术界的理论探讨中,出现了许多与智慧农业类似或关联的名词术语,如精准农业、数字农业、智能农业等,这些不同的名词概念强调或侧重点有所不同。学者普遍认为,智慧农业强调的是通过综合运用智能技术,提高人类对农业系统综合管控的能力;智能农业强调的是通过在机器上运用各类电子技术和控制技术,提高机器装备对农业各环节的智能化操控水平;数字农业是通过将农业全要素、全系统、全过程数字化,进而实现农业科学决策和数字化管理;精准农业强调的是基于农业动植物和空间环境等信息的变化而采取的精细投入管理。笔者认为,虽然这些名词的含义和侧重点不同,但信息和知识要素的本质没有改变,只是智能化的程度有所差异,随着技术水平的不断发展,终将走向智慧农业的目标。
从系统工程的角度理解智慧农业
早在1958年,毛泽东同志曾提出“农业八字宪法”(土、肥、水、种、密、保、管、工),这一论断深刻阐释了农业生产的系统性、复杂性。智慧农业作为农业生产的重要体现,也兼具系统工程的特点:一是智慧农业由数据、知识、模型、软件、硬件等要素相互作用、相互依赖的若干部分结合而成;二是智慧农业具有明显的结构功能特性,无论是智慧种植、智慧养殖,还是智慧加工物流,智慧农业均由“信息获取—智能决策—精准作业—个性服务”四大部分组成,且最终目标均在于追求高质量、高效率、高效能、方便快捷和人性化;三是智慧农业具有“1+1>2”的特点,即农业生产全产业链的智慧化管理效果大于产业链单环节的智慧管理效果,因此智慧农业要全链条实施;四是智慧农业是一个复杂的系统工程,智慧农业在应用与发展上充分体现了学科交叉融合的特点,而不是信息科学技术的简单应用和堆砌,在学理性问题上,不仅要融合农业科学、信息科学和工程科学等相关学科的基本原理、理论和方法,还必须处理好技术、经济、社会、管理、环境和政策等多要素的集成优化,这也是决定智慧农业实施效果的重要方面。
2.智慧农业的特征
智慧农业具备先进的生产力特征
从系统工程的角度,可以将智慧农业理解为先进生产力要素组合后导致农业生产方式的变革。结合智慧农业技术特点与应用场景,智慧农业作为先进的生产力融合了三大生产力要素:一是农业生物技术(Biotechnology,BT),这是智慧农业的技术基础;二是农业信息技术(Information technology,IT),即主要依赖先进的信息科技增加人的智慧、提升农业装备的智能化水平,为农业赋能;三是农业智能化装备(Intelligent equipment,IE),主要是辅助或替代人操作,减少生产经营者的劳动强度。智慧农业技术是直接的生产力,通过与农业各生产力要素(农业生产者、农业生产工具、农业生产对象)渗透融合,起到生产力“倍增器”的作用,可以大幅度提高农业劳动生产率。智慧农业也是未来最活跃的农业生产力,互联网、农业人工智能、农业大数据、区块链等技术,将提升农业生产者决策和管理行为的智能化水平;农业传感器、农业机器人、农业智能装备等技术将实现传统农业生产工具的转型升级;数字化技术将使我们更加清晰地认识和把握农业生产对象及其与各生产要素、环境要素、技术措施等的相互作用关系。
智慧农业的经济特征
数字经济已经成为当今世界经济发展的主要驱动力,2020年我国数字经济规模达到39.2万亿元,占GDP的38.6%。据中国信息通信研究院数据,预计2035年中国数字经济规模将达150万亿元,占GDP的55%,达到发达国家平均水平。智慧农业可以创造数字经济,澳大利亚The Yield公司利用大数据和人工智能技术为养殖场提供精准信息服务,年产值近5亿美元。2020年我国农产品网络零售额达到6107亿元,农业数字经济总量达到6920亿元,预计2025年我国农业数字经济规模将达到1.26万亿元。新发展格局下,利用信息技术大力发展智慧农业,通过构建农业新业态,发展农村新兴产业,不仅有利于缩小城乡数字和经济鸿沟,同时更孕育着巨大规模的农业数字经济发展潜力。
国外智慧农业布局、发展现状与趋势
近10年来,美国、英国、德国、加拿大、日本、韩国等农业发达国家高度关注智慧农业的发展,从国家层面进行战略部署,积极推进农业物联网、农业传感器、农业大数据、农业机器人、农业区块链等智慧农业关键技术的创新发展。2015年,加拿大联邦政府预测与策划组织发布了《MetaScan3:新兴技术与相关信息图》,指出土壤与作物感应器(传感器)、家畜生物识别技术、农业机器人在未来5~10年将颠覆传统农业生产方式。2015年,日本启动了“基于智能机械+智能IT的下一代农林水产业创造技术”项目,核心内容是“信息化技术+智能化装备”。2017年,欧洲农机工业学会提出了“农业4.0 (Farming4.0)”计划,强调智慧农业是未来欧洲农业发展的方向。2018年,美国科学院、美国工程院和美国医学科学院联合发布《面向2030年的食品和农业科学突破》报告,重点突出了传感器、数据科学、人工智能、区块链等技术发展方向,积极推进农业与食品信息化。美国国家科学技术委员会(National science and technology council,NSTC)在“国家人工智能研发战略计划”中,将农业作为人工智能优先应用发展的第10个领域,资助农业人工智能科技的中长期研发;美国农业部“2018—2022年战略规划”中,突出了农业人工智能、自动化与遥感技术的应用。根据国际咨询机构Research and Markets分析,2019年全球智慧农业市值167亿美元,2027年将达到292亿美元,2021—2027年全球智慧农业市值年复合增长率(Compound annual growth rate,CAGR)将达到9.7%。目前,国际上以美国为代表的大田智慧农业、以德国为代表的智慧养殖业、以荷兰为代表的智能温室生产以及以日本为代表的小型智能装备业均取得巨大进步,形成了相对成熟的技术和产品,而且还形成了商业化的发展模式,为我国发展智慧农业提供了可借鉴的经验。
新一代信息科技与农业的深度融合发展,孕育了第三次农业绿色革命——农业的数字革命,使农业进入了网络化、数字化、智能化发展的新时代。
1.农业传感器
传感器作为智慧农业的信息之源,在推动智慧农业发展中具有举足轻重的作用。目前,农业传感器主要包括农业环境信息传感器、动植物生命信息传感器、农产品品质与安全信息传感器、农机工况与作业传感器等。近年来,农业传感器新原理、新技术、新材料和新工艺不断突破,已由简单的物理量传感走向化学、生物信息的快速感知,纳米等新材料技术的发展使得传感器向着微型化、智能化、多样化的趋势发展。如美国正在发展利用激光诱导光谱技术测量土壤养分和重金属含量,利用微纳米技术研制可进入动植物生命体新陈代谢循环系统中的传感器等。总体判断,美国、德国、日本等国家在农业传感器领域处于领先地位,垄断了感知元器件、高端农业环境传感器、动植物生命信息传感器、农产品品质在线检测设备等相关技术产品。未来5~10年,研发准确、精密、便携的传感器和生物传感器将是各国农业传感器创新发展的重点领域。这类传感器不仅可以实现一次连续监测多个环境和动植物生命信息的特征参数,也可以对环境、生物及非生物胁迫等进行持续监测,具备在植物和动物发病之前检测疾病的能力,有助于实现各种食品和农业学科相关指标的快速检测和监测。比如,柔性纳米传感器能够简单便捷地贴附安装于动植物组织不规则表面进行信息的精准监测;微纳米尺度的传感器可植入动植物等生物体内,并进入生命体新陈代谢的循环系统中,实时监测动植物生命体的生物信息;纳米传感器阵列具有多功能探测与分析能力,匹配强大的数据处理、存储与分析能力以及传感网络,具备复杂数据远程分析处理能力,能够让监测结果更加精准。
2.农业大数据智能
国际上通过图像识别、机器学习等技术,将农业领域大量结构化和非结构化数据(天气、土壤、动植物生长发育、市场数据、社交媒体等)转化为知识,并提供智能决策,实现部分或全部替代人工决策,在节省时间、增加安全性的同时减少潜在的人为错误,大幅度提高决策的科学性和准确性。得益于强有力的基础研究水平和能力,美国、荷兰、以色列、日本等国家在农业数字模型与模拟、农业认知计算与农业知识发现、农业可视交互服务引擎等技术、算法、模型等方向处于国际领先地位。如美国位于新泽西州的纽瓦克垂直农场,利用大数据技术分析温度、湿度、二氧化碳及作物长势信息,与传统农场相比,每0.093 m2用水减少95%、肥料减少50%,农药零投入,年产量高出390倍;意大利Tuscia大学利用大数据技术和人工智能技术,加快气候适应性植物的育种研究,或将重塑未来农场。综合判断,未来大数据驱动的知识决策替代人工经验决策、知识决策主导的智能控制替代简单的时序控制,从育种到产品销售的整个农业产业链将得以广泛应用。
3.农业智能装备
美国、德国、英国、日本等国家的农业智能装备研究与应用发展迅速,主要农业生产作业环节(包括果蔬嫁接、移栽、施药、采摘,畜禽饲喂、清粪、奶牛挤奶,农产品在线分级、标识、包装等)已经或正在实现“机器换人”或“无人作业”,大幅度提高了劳动生产效率和农业资源利用效率。如美国Abundant Robotics公司开发的苹果采摘机器人,可准确识别成熟的苹果并且可以以1个/s的平均采摘速度连续工作24 h;瑞士EcoRobotix公司开发的田间除草机器人,可以准确识别杂草并通过机械手臂对杂草进行除草剂喷洒,农药使用量可降低20倍,农业相关成本节约30%;爱尔兰MagGrow公司开发的农药喷洒机器人使用永久性稀土磁体产生电磁荷,可解决农药漂移问题,农药的使用量减少了65%~75%。