初中数学转化思想初探
作者: 刘松摘 要:数学思想方法是中学数学的重要内容之一。近年来在初中数学教学中如何渗透数学思想,已成为广大数学教师研究的热点问题。而转化思想,又是诸多数学思想中运用较广泛的思想方法之一。本文拟就什么是转化思想,加强转化思想教学的必要性以及如何加强转化思想的教学作一些初步探讨。
关键词:数学思想; 转化思想; 必要性; 意识
中图分类号:G633.6 文献标识码:A 文章编号:1006-3315(2013)04-056-001
数学思想是数学规律本质的体现,是数学的灵魂和精髓,而转化思想又是诸多思想方法中运用较为广泛的,下面是本人对数学转化思想的一些认识。
一、什么是数学的转化思想
转化是一种重要的数学思想。所谓转化,就是在研究和解决有关数学问题时采用某种手段,将问题通过变换使之转化,进而达到解决的一种方法。
二、加强转化思想教学的必要性
1.从初中教学的现状看加强转化思想教学的必要性
笔者了解到在一般的教学活动中甚至在一些相当规格的公开课竞赛课活动中,片面追求形式上的热闹,重形式轻思想的弊端仍然不同程度的存在,致使学生缺少全面周密分析问题和解决问题的能力。
近年来我市数学中考卷上多道题目涉及转化思想:
题1.在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班的人数比九(2)班多5人,问两班各有多少人?
此题的重点是数学建模列出分式方程,即把实际问题转化为数学问题,然后把分式方程转化为整式方程来解决。本题是我市2010年中考第22题,50%的考生扣1分,43%的考生得0分,说明有接近一半的学生不会通过数学建模来把实际问题转化为方程来解决。这从一个侧面说明我市初中数学教学中转化思想的教学亟待加强。
2.从初中教材内容看加强转化思想教学的必要性
笔者对初中数学教材作过统计,发现涉及转化思想的内容多达33处,现简要罗列如下:
数学(七上):P24两个负数比较大小;P31有理数减法法则;P40有理数的除法法;P70代数式的值;P76合并同类项。
数学(七下):P27n边形的内角和公式的推导;P29任意多边形的外角和的;P40同底数幂的乘法公式的推导;P43幂的乘方与积的乘方的公式推导;P47同底数幂的除法公式的推导;P58单项式乘多项式;P61多项式乘多项式;P64完全平方公式的推导;P66平方差公式的推导;P89二元一次方程组的解法。
数学(八上):P31等腰梯形的轴对称性;P148求函数值。
数学(八下):P9不等式的解集;P22解不等式组;P26一元一次不等式与一元一次方程、一次函数;P40通分;P43分式的减法;P47分式的除法;P52解分式方程;P113相似三角形的应用;P135证明平行线的判定定理。
数学(九上):P6等腰三角形的性质和判定;P9直角三角形全等的判定;P28等腰梯形的性质和判定;P31中位线;P85配方法解一元二次方程。
数学(九下):P51解直角三角形;P54锐角三角函数的简单应用。
我们要站在一个较高的层面上,根据数学知识的内部结构,自觉的有意识地向学生渗透数学转化思想,这是衡量我们教学品味高低的标志之一。
3.从学生继续学习以及参与社会生活、从事生产劳动的需要看加强转化思想教学的必要性
随着学生数学知识的拓广和加深转化思想在学生中所处的位置将愈加显得重要,可以说它是学生继续学习的需要和保证。数学转化思想作为重要的数学思想已广泛渗入到自然科学乃至社会科学的各个领域,让学生在初中阶段就初步掌握这一现代思想武器,无疑是十分必要的。
三、如何加强转化思想的教学
1.增强转化的意识
在传统教法的影响下,较少注意引导学生从数学思想的高度去总结归纳升华从而弱化甚至忽视了数学思想的教学,致使学生对转化的认识朦胧,应用转化思想处于一种无意识的状态。根据课程标准的要求,我们要把掌握转化思想作为一项教学目标纳入教学过程,使学生形成自觉地对有关数学问题进行转化的习惯。
2.要在日常教学中注意渗透转化思想
在讲解二元一次方程组时,注意强调解二元一次方程组的关键是通过消元把二元一次方程组转化为已学过的一元一次方程来解决。在讲用配方法解一元二次方程时,一定要讲明配方的目的是把方程转化成上节课已学过的可用直接开平方法解的形式,达到化未知为已知的目的。
笔者认为:自觉地重视和加强转化思想的教学是提高数学教学效益的有效途径,是提高学生数学素质的需要。它是一种深层次的教学改革,它对学生学习掌握其它数学思想势必产生良好的正态迁移作用。
参考文献:
《数学课程标准》,北京师范大学出版社 P2.P6