硅谷之后,谁是下一个AI之城?

硅谷之后,谁是下一个AI之城?0

伦敦的国王十字地区不只是交通枢纽,也是科技大厂聚集区。

2022年11月开启的生成式AI浪潮中,几乎每个国家、每个有全球野心的城市,都在制定政策、调配资源、激活当地创业氛围,一些政府甚至不惜亲自下场支持当地最有潜力的创业项目。所有人都明白:争夺大模型,就是争夺下一个技术时代的基础平台。互联网和移动互联网时代,整个欧洲都错过了这样的机会,只有中美两国培养出了10亿用户规模以上的硬件品牌和软件应用。

生成式AI带来新的洗牌机会,但能否抓住这样的机会取决于很多因素。我们选择和调查了过去一年来以人工智能之名在各大媒体上频繁露出的几个城市,尝试回答“到底哪个城市能抓到大机会”这一问题。巧合的是,在访问了蒙特利尔、硅谷、纽约、伦敦、巴黎、新加坡、北京和东京等几个城市的相关人士后,我们发现一个叫AMiner的机构在跟踪全球人工智能领域10年发展后提出的创新城市排名,与我们的调查选择几乎重合。AMiner的榜单衡量了全球各地论文、学者、机构的数量与质量,以及这些城市与国际合作的指数—选择和采访当地人士时,我们也逐一涉及了这些维度。那么,所谓的巧合其实是种必然。

已经很少有一个机会能让全球众多城市都跃跃欲试了。到底哪个城市能抓住机会?谁能抓到最大的机会?我们的初步调查表明,在这种全球影响力竞争中,区域竞争其实比全球竞争更激烈。在竞争全球用户之前,每个城市及其公司都需要先角逐人才。而在人才流动上,全球化仍然要让位于区域化。其次,对于学术资源深厚的城市,每个大厂都想去设办公室、抢夺人才,但这对当地城市不见得是好事。最后,基础技术不是一切,产业和文化具有多样性,才能支撑更繁荣的机会。

硅谷之外:蒙特利尔和纽约寻求突破

在博世工作3年后,沈露兰决定放弃博世中国功能负责人一职,前往加拿大蒙特利尔的麦吉尔大学读博。2022年博士即将毕业之际,沈露兰就地创立了自己的人工智能公司AwakeAI,尝试通过AI视觉技术实时检测视频监控数据来分析老年人的生活习惯,为护理人员和家人提供实时信息和风险警报。

把公司注册在蒙特利尔的原因之一是自己在这里读了书,另一个原因,这里不缺做AI基础研究的人才。

硅谷之后,谁是下一个AI之城?1 硅谷之后,谁是下一个AI之城?2

这一轮生产式AI浪潮到来之前,自2017年起,包括Google、微软、Meta、华为在内的技术公司纷纷在蒙特利尔设立研究中心。2018年,加拿大政府还将蒙特利尔确立为国家AI供应链超级集群“ScaleAI”的总部所在地。

把这些技术大厂吸引到加拿大尤其蒙特利尔的,是这个人口只有400万的城市的学术资源。“深度学习三巨头”中的两位—杰弗里·辛顿(Geoffrey Hinton)和约书亚·本吉奥(Yoshua Bengio)都在加拿大,前者在多伦多,后者就在蒙特利尔,并且创立和运营着一个叫Mila的机构,那里汇聚了超过1400名AI相关的研究人员。如果计算人才密度—尤其顶尖学术研究人才的密度—恐怕全球没有几个城市能与这个小城相比。

Mila全称“蒙特利尔学习算法研究所”(Montreal Institute forLearning Algorithms),是目前全球最大的深度学习研究所。2017年,在本吉奥的牵头下,蒙特利尔大学、麦吉尔大学等高校联合成立了这个机构。用本吉奥的话说,Mila诞生于一个“让蒙特利尔成为世界AI中心的疯狂梦想”。

除了基础研究,Mila旗下的“MilaStartup”孵化项目还为有创业企图的研究者提供资金和办公场地支持。入选这个孵化项目的门槛很高,自发起以来,每年通过Mila Startup审核的项目不会超过10个。严格筛选的好处是,对投资人来说,从这个机构里出来的项目的创新性和技术能力几乎不会受到任何质疑。

“从融资等各种角度,硅谷肯定是最好的。但在深度学习这一块,蒙特利尔基本上对标斯坦福,现在这里处于飞速发展状态。”沈露兰对《第一财经》杂志说,去年,她创立的AwakeAI也入选了“Mila Startup”。

硅谷之后,谁是下一个AI之城?3
蒙特利尔的Mila是全球最大的人工智能人才库,创立者是深度学习三巨头之一的Bengio。

学术中心加技术大厂,这个组合是硅谷成为生成式AI全球中心的关键原因,而蒙特利尔同样拥有这个组合,这让它看起来像小型的硅谷。Mila只是蒙特利尔当地有孵化器性质的机构之 一。

加拿大另一个最瞩目也最有野心的机构是“NEXT Canada”。这个名字听起来就很大,因为创立这个项目的人想要改变的正是加拿大本地的打工文化。在某种程度上,它就像创业孵化器Y Combinator的加拿大版。

沈露兰告诉《第一财经》杂志,加拿大虽然有不少学术水平不亚于斯坦福、哈佛之类的高校,但从加拿大的高校毕业的学生们后来的发展总是“不如斯坦福、哈佛的毕业生”,原因之一就是加拿大的“中产文化”。在加拿大,大部分学生毕业后的职业选择都是去Google、Facebook等大厂打工,寻求一种稳定的中产生活,而不是冒险创业。不过,这种状况正在被改变。

2010年,4名加拿大学者和企业家,共同召集了500多名加拿大学者、投资者和创业者组成了一个机构,决定培养加拿大的“next founder”(下一个创业者),而不是“next worker”(下一个打工人)。这个机构的名字就充满野心,叫作“NEXT Canada”。

受这个富有雄心的机构激励开始创业的加拿大年轻人正在增加,沈露兰本人也是其中之一。“相较于传统孵化器,它注重的不是你怎么发展企业,而是教你怎么做一个founder(创始人)。”沈露兰说。她本人是苏州人,一个生活安逸程度和蒙特利尔不相上下的中国新一线城市,在创业之前,她也和不少在加拿大读书的当地人一样,不觉得自己没有能力,但是从来没有想过要创业。AwakeAI创立之后很长一段时间,他们都在频繁参加创业竞赛,直到2023年的暑假,NEXTCanada在多伦多发起的“Next 36”项目踢了她一脚,让她下定回中国开拓市场的决心。

来自Mila的人才支持和N E X TCanada的创业指导,让沈露兰的创业项目在蒙特利尔初步扎下脚跟。不过如果继续往下发展,她认为蒙特利尔仍然有短板,比如它在算法开发上具有优势,但在落地场景和推进进度上,这里落后于全球其他地方。就沈露兰的创业项目来说,存在“鸡生蛋还是蛋生鸡”的问题,也就是说她需要在养老院和护理院寻找试点、实地获得数据,才能开发出真正派得上用场的老年人照护算法。

不少人工智能项目,只要进入垂直应用场景,都需要垂直产业配合。沈露兰认为,自己在加拿大当地没有太多社会关系,比较难找到愿意部署其老年人照护程序的养老院,2023年她回到老家苏州,很快就谈下一个比较大的客户—泰康。未来如果业务发展顺利,她也想到硅谷开一个办公室以此进入美国市场,因为加州有更成熟的康养产业,还有她渴求的市场产品人才。

蒙特利尔遭遇的困境,作为“大号蒙特利尔”的硅谷也正在遭遇。

2023年,谢赛宁离开了工作4年多的Meta,加入纽约大学,也从硅谷搬到了纽约。然后他发现,“这里的AI研究和创业氛围超乎我的想象”,他对《第一财经》杂志说。

谢赛宁本科毕业于上海交通大学,在加州大学圣迭戈分校获得了博士学位,目前担任纽约大学计算机科学系助理教授。他与比尔·皮不勒斯(Bill Peebles)合作发表的DiT模型相关论文被认为是Sora构建的基础。

谢赛宁对《第一财经》杂志称,纽约的AI发展显示出很强的上升势头。从创投热情、学术和人才储备各个角度,纽约都具备成为AI发展中心的条件。目前,纽约共有35家AI独角兽公司,融资总额达170亿美元。其中,开源模型社区Hugging Face和视频模型公司Runway都诞生于此。今年2月,还有媒体报道称OpenAI正在为纽约办公室寻找地点;3月,另一家AI初创公司Cohere也宣布开设纽约办事处。

这一轮人工智能新浪潮之前,纽约就汇集了多个顶级AI实验室,除了由“深度学习三巨头”之一的杨立昆(Yann LeCun)领导的纽约大学CILVR实验室,哥伦比亚大学、康奈尔大学和普林斯顿大学都在AI领域有强劲的科研实力。

如果说硅谷在基础模型领域确立了主导地位,纽约则正在成为人工智能商业繁荣的代名词。纽约是全球44家《财富》500强公司的总部所在地,这里聚集着各个大公司的决策者,他们都是AI市场的潜在买家。硅谷银行发布的统计数据显示,在纽约,获得风险投资的AI公司中有71%属于垂直应用领域,而在硅谷,这一指标数据是63%。

纽约开源模型初创公司Nomic AI的创始人布莱登·杜德斯塔(Brandon Duderstadt)曾在播客节目中表示,纽约目前的AI生态系统肯定比硅谷小,但纽约具备硅谷所缺乏的发展优势。“在纽约,你不仅仅是被技术包围,而是被来自各行各业的不可思议的人包围。”杜德斯塔说。

也正是在来到纽约后,谢赛宁对技术有了新的认知。“AI发展的最终愿景不是创造尖端技术,更重要的是寻求这些技术为社会带来福祉,让来自不同背景的人都能够提高生产力和创造力,从中受益。”他对《第一财经》杂志说。

在纽约,谢赛宁参加了Runway公司举办的AIFF人工智能电影节,这项活动吸引了来自全球各地的众多艺术家和创作者,共同探讨视频生成的未来。谢赛宁称,作为金融、商业、贸易、文化和传媒中心,纽约拥有多样化的社区、族群和广泛的职业机会,这是硅谷缺乏的。

欧洲:伦敦与巴黎的双子星之争

和北美老牌AI重镇与新兴AI创新中心并存不同,欧洲正在崛起的两个AI之城—伦敦和巴黎都是新星,它们都想争夺生成式人工智能领域的领先者之位,起码是欧洲的领先者。

非要比资历的话,伦敦在人工智能领域的经验更多一点。早在2010年,出生于伦敦的戴密斯·哈萨比斯(Demis Hassabis)和童年好友穆斯塔法·苏莱曼(Mustafa Suleyman),加上来自新西兰的谢恩· 莱格(Shane Legg),就一起在伦敦创立了DeepMind,主要研究机器学习算法。

2014年,远在硅谷的Google来到伦敦,斥资6 . 6亿美元买下了DeepMind,当时这家创立仅4年的公司还没有公开发布过任何一款产品。而被收购以来,DeepMind的总部也从未搬离伦敦。

哈萨比斯曾在采访中表示,DeepMind必须留在伦敦,这件事没有商量的余地。“如果你拥有剑桥大学的物理学博士学位,并且想要做一些改变世界的技术,在伦敦没有太多选择—而在硅谷有成千上万的选择。”他曾在接受采访时说,如果创业者专注于长期目标,硅谷有太多泡沫,那里的人每5分钟就试图创造下一个Snapchat。

DeepMind在伦敦的办公室位于“国王十字”(King's Cross)地区,这里除了以火车和地铁枢纽著称—《哈利·波特》里的“九又四分之三”站台就在这里—如今还是英国甚至整个欧洲令人瞩目的人工智能创新中心。

上一篇 点击页面呼出菜单 下一篇