在初中数学教学中适当应用数学史资料
作者: 蔡杰摘 要:数学史知识应用于数学课堂教学,对于培养学生学习数学的兴趣有着重要作用。教师应根据教材特点,适当地选择数学史资料,有针对性地进行教学。此外,教学中还应注意数学史知识所处的地位与所起的作用,合理利用恰当的数学史资料。
关键词:数学史; 教学; 学习; 兴趣
中图分类号:G421 文献标识码:A 文章编号:1006-3315(2014)06-029-001
当前不少学生因为学不好数学,认为数学是一门枯燥乏味、没有实际意义的学科,他们学数学的目的只是为了应付考试;因为没有领悟数学的思想和精神,就认为"概念我会背,公式我会用,定理我会证,题目我会做是学好数学的最高标准。
其实如果学生能把枯燥的数学学习视为一种享受的话,那么便提高了对数学学习的兴趣。因此必须打破封闭的教学结构和单一呆板的教学模式,使教学过程成为一个生动活泼、有声有色的活动过程,促使学生将全部的精力都投入到学习的活动中去。
在教学中,教师应根据教材特点,适当地选择数学史资料,有针对性地进行教学。
例如,在一元一次方程这章内容的教学中,教师就可以介绍下列资料给学生:
1.现存世界上最古老的方程出现在英国考古学家兰德1858年找到的一份古埃及人的“纸草书”上,经破译,上面都是一些方程,共85个问题。如“啊哈,它的全部,它的1/7,是19”;“一堆,它的2/3,1/2,1/7,居然是33”。再译的明白一点或者直接用现代的一元一次方程表示就是:x+1/7x=19;x+2/3x+1/2x+1/7x=33
2.在我国,“方程”一词最早出现于东汉初年(公元前后)的数学经典著作《九章算术》的第八章“方程”到唐、宋时期,对方程的研究达到我国的鼎盛阶段。这是所创立的“天元术”解题,从设未知数到列方程都和现代数学十分相似。也就是在这段时期,方程的知识从中国传入日本。
3.历史上许多名人除了在他们各自的领域做出了杰出的贡献,同时也给后人留下许多有趣的数学问题,这些名人名题表述独特、构思巧妙、趣味浓郁、惹人喜爱,给枯燥的数学带来新颖有趣之感。这些问题蕴含着丰富的数学内容,都可以通过列一元一次方程解答,其思路、方法和技巧,往往别具一格,令人耳目一新。
一、阿基米德与“皇冠”
阿基米德是公元前3世纪古希腊的伟大数学家,他于公元前287年生于意大利的叙拉古城,叙拉古城国王亥隆有一顶皇冠,该金冠约重12磅,国王怀疑工匠在金冠中掺了银子,于是请阿基米德来检验,条件是不对金冠有任何损害.阿基米德先称出金冠的重量是12磅,然后称了一块重12磅的纯金和一块重12磅的纯银在水中的重量,发现金块减轻了0.59磅,银块减轻了0.89磅,最后又称出了金冠在水中重量减轻了0.66磅,因而他断定工匠在金冠中掺了银子,请问这顶金冠用了多少磅金,又掺了多少磅银?
分析:根据题意,易知1磅纯金在水中减轻约0.049(磅),I磅纯银在水中减轻约0.074(磅),设皇冠中有纯金x磅,则掺进纯银为(12-x)磅。
根据题意得0.049x+0.074(l2-x)=0.66,解之得x=9.12,则12-x=2.88。
所以,这顶金冠中用了大约9.12磅金,大约掺进了2.88磅银。
二、毕达哥拉斯与“学生数”
一个人问“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“共有这么多学生在听课,其中的二分之一在学习数学,四分之一在学习音乐,七分之一沉默无言,此外,还有三名妇女。”
分析:设毕达哥拉斯的学校有学生x名,则学数学的有1/2x名,学音乐的有1/4x名,沉默无言的有1/7x名,再加上三名妇女一共等于总人数x,依此,列方程为:1/2x+1/4x+1/7x+3=x,解之得x=28 所以,毕达哥拉斯的学校有学生28名。
三、丢番图与他的“墓志铭”
古希腊数学家丢番图,是以研究一类方程(不定方程)著称于世的数学家,在他的墓碑上,刻写着这样一段墓志铭:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路,上帝给予的童年占了六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。五年之后,天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。悲伤只有用数论的研究去弥补,又过四年,他也走完人生的旅途。请你列出方程算一算数学家丢番图去世的年龄。
分析:本题设丢番图去世的年龄为x岁,根据墓志铭上的顺序,把从童年到去世的每个阶段用代数式表示,其和为x,就是他去世的年龄。
根据题意得1/6x+1/12x+1/7x+5+1/2x+4=x,解得x=84,所以,数学家丢番图去世的年龄是84岁。
对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是十分重要的;此外,许多历史名题的提出与解决都和大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,学生会感到一种智力的挑战,也会从学习中获得成功的享受。最后,历史名题往往可以提供生动的人文背景,使学生初步感受数学的发展对于人类文明的价值。
我们可以把这种将数学史资料与课程内容相结合的教学方式运用到中学的日常数学教学中。这无疑拓宽了我们的教学模式,教学方法;同时也使同学们对学习加深了兴趣,使我们的教学过程生动,达到最终的教学目的。
向学生展示历史上的开放性的数学问题,可以使他们了解到数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、错误中发展进化的,数学的进步是对传统观念的革新,从而激发学生的非常规思维。数学是人类文化的重要组成部分。为此,中学数学课程应适当引入数学史资料,体现数学的文化价值。
在中学数学教学中,渗透数学史教育应具有“分散性”、“长期性”、“经常性”等特点。综上,我们应注意加强数学史知识的学习,注意收集数学史资料,并能恰当地运用到实际的教学工作中去,提高我们的教学艺术。