

纸上得来终觉浅 绝知此事要躬行
作者: 刘太山
94年大学毕业后一直从事农村教育工作。当被通知教学小学数学,不禁哑然一笑,随之有一种大材小用的感觉。然涉入课堂还没几节课,便感觉茫然起来:课本知识,一目了然,自觉寥寥几句就可讲完。初以为本人言简意赅、提纲挈领,洋洋还没来得及得意,一次次学生的作业、单元测试彻底颠覆了我原来的自信与憧憬!沉默!沉默!依然沉默!
不在沉默中爆发,就在沉默中灭亡!反思,学习,探索,再反思,总结,再反思,再总结...。冷静下来重温大学老师的谆谆教导,豁然开朗的感觉扑面而来...。
既没有高大上的理论依据,也没有科学、具体、华丽的数据,开门见山,把自己教学中的点滴感悟、些许经验(教训)全盘托出。期盼您的批评与指正!
众所周知,小学数学图形教学是一个难点。三角形、长方形、正方形、梯形、圆、长方体、正方体、圆柱的周长、面积、体积公式。诸如
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
尤其是在图形教学方面。例如在长方形教学过程中,首先让学生手工制作长方形。在制作的过程中,充分感受长、宽分别相等,长方形的周长,长方形的面积等。
一注重过程更注重方法。
二化繁为简,尽量用简单、通俗易懂、贴近生活、学生感兴趣的方式教学,往往事半功倍,起到意想不到的效果!
例1:长方形问题:长a,宽b,周长c,面积s
小学数学长方形问题涉及长a、宽b、周长c、面积s四要素。已知其中任何两项,即可求其他两项。①引导学生课下用下棋方式进行游戏,自行制定规则,激发学生学习的兴趣。②引导学生归纳出长方形考查有几种题型。如:已知a,b求c,s;已知a,c求b,s;已知a,s求b,c;已知b,c求a,s;已知b,s求a,c;已知c,s求a,b.③学生自主设计关于长方形的测试题,用于各小组之间竞赛,量化管理,激发小组内互帮互助,小组之间相互竞争。
例2:圆的问题
小学数学涉及半径r、直径d、周长c、面积s四个要素。已知其中任何一项,即可求出其他各项。①引导学生课下用下棋方式进行游戏,自行制定规则,激发学生学习的兴趣。②引导学生归纳出圆形考查有几种题型。如:已知r求d,c,s;已知d求r,c,s;已知c求r,d,s;已知s求r,d,c.③学生自主设计关于圆形的测试题,用于各小组之间竞赛,量化管理,激发小组内互帮互助,小组之间相互竞争。
此类方法不仅可用于图形中,也可以用于数的计算中。
例3:a+b=c 中,已知其中任何两项,即可求另外一项。
b=c 中,已知其中任何两项,即可求另外一项。
a×b=c 中,已知其中任何两项,即可求另外一项。
a÷b=c 中,已知其中任何两项,即可求另外一项。
三在抓好基础知识与技能的基础上,还要抓好学生的逻辑推理能力、思维能力。
(一)高年级小学生的思维特征
1、 在五、六年级小学生正处于高年级阶段,他们的思维主要有以下几个特点:①思维材料和方式发生了变化,这为中高年级学生从具体形象思维逐步向抽象思维过渡准备了条件。②思维品质有所发展,辩证思维开始出现,这为中高年级学生思维能力的形成提供了可能性。
2、思维品质的差异,为思维能力的提高提供了空间。由于心智的发展和教育的各种因素影响,学生的思维品质开始出现分化,主要表现为:①是学生思考问题时主动思维倾向存在,但是不能很快进入思维状态,还没有形成一个良好的思维习惯,缺乏正确思维方法;②是数学知识是按一定的内在联系组织在一起的,学生还不能对所学知识形成一个系统的认识和理解。
(二)、培养高年级小学生数学思维能力的措施
1、通过课堂授课,培养学生分析问题的思维能力
在学习新课时,教师要重视对学生 操作感与知识迁移的指导,要加强从知识整体与局部分别设计有坡度、有层次、有启发性并且符合学生认识规律的系列问题,让学生亲身经历探索新知识的思维过程,引导学生自己发现问题、分析问题并得出结论,发现新知规律,从而培养其学习能力,发展其智力。
2、通过让学生独立思考,培养学生判断、推理问题的思维能力
培养学生初步逻辑思维能力的过程即是培养学生有根据、有条理地进行思考后能完整地叙述 自己思考的过程以及说明理由的过程。而培养学生有根据、有条理思维的关键是不断提高学生思维的逻辑性,让学生学会思考。学生体会到思考的乐趣,就会养成独立思考的习惯。
3、及时反馈,思维总结
学生的成绩最大的误区。不是自己的能力问题,知识的掌握多少,而是不从失败中引起重视,不及时总结,究竟错在哪里,为什么错,都要弄个水落石出,方能找出原因,得以巩固知识。
以上只是本人在一线工作的粗浅体会,希望各位同行不吝赐教,本人抛砖引玉的愿望也就达到了。
做一名有思想的教育者,让我们共同行动起来!