2024未来之路:大模型发展“十大机遇”

作者: 田丰

商汤科技董事长兼CEO徐立强调:“在现在这个时间点上能不能用AI来命名时代,取决于它能不能把我们这个时代生产要素的成本规模化下降,从而才能让AI走进千家万户。”2024年伊始,商汤科技智能产业研究院梳理出“中国大模型高质量发展的十大机遇”,为企业家、创业者们点亮数字化转型征程。

机遇一:智能基建重资产投入,发展空间巨大

大模型、大计算、大数据都具有重资产投入的发展特征。智能计算基础设施在长周期建设过程中,具有“资本密度”“算力密度”“数据密度”持续增加的特征,目前投资总额尚具有极大提升空间,将不断增强我国经济的比较优势。例如支撑生成式智能应用的智能计算中心资产规模日趋庞大,新型AIDC(AI Data Center)智能基础设施通过高效整合能源、算力、训练数据、大模型等新生产要素资源,为以智能经济为核心的“数字经济3.0”构筑护城河,支撑实体经济生产结构的数字化转型调整。

正如卡尔·马克思在《资本论》中所说“基础设施,即固定资本,是生产过程所必须的持久性条件”。1995年,美国“信息高速公路计划”总投资额4 000亿美元,占年度GDP的5.8%,开启了全球互联网“数字经济2.0”浪潮,近年美国数字经济年均增速超过6%,占GDP比重已超过10%,年度产值高达20 000亿美元,并提供了5%的就业岗位。据国家发展改革委数据显示,2022年开始,中国“东数西算”工程项目总投资额超过4 000亿元,在国家年度GDP中占比不到1%,仍有加大基建投入的空间。IDC预计2022~2027年,中国智能算力规模复合增长率高达33.9%,是通用算力增速的2倍,且用于行业应用的推理算力从2024年出现“拐点”,首次超越训练算力规模。2024~2027年,推理算力占比从67.7%提升至72.6%,而2025年中国数字经济规模将首次超过实体经济(GDP占比超过50%)。

经济学理论中,新型社会基础设施的重大意义在于促进技术进步、提高生产率、加速内生经济增长,具有良好的“正外部性”与“网络效应”。1955年出版的《经济增长理论》一书中,经济学家阿瑟·刘易斯认为“基础设施投资对于经济增长至关重要,因为它们为生产要素提供了有效的运作环境”。在2023年2月,国务院印发的《数字中国建设整体布局规划》中明确:“数字中国建设按照‘2522’的整体框架进行布局,即夯实数字基础设施和数据资源体系‘两大基础’,推进数字技术与经济、政治、文化、社会、生态文明建设‘五位一体’深度融合,强化数字技术创新体系和数字安全屏障‘两大能力’,优化数字化发展国内国际‘两个环境’。”

2024未来之路:大模型发展“十大机遇”0

数字中国建设,与“数字基础设施互联互通”“数据资源规模和质量”紧密相关。在中国“智能计算基建化、传统基建智能化”的过程中,科技创新是推动经济增长、社会基础设施高质量发展的原动力。

机遇二:机器语言逼近人类语言,自然人机交互获得全民用户

基于大语言模型的对话式交互,降低全民对AI工具的开发与使用门槛,将极大刺激AI市场需求的爆发。“这场未来通信革命带来的好处与难题将比上次个人计算机革命造成的好处与难题大得多。”比尔·盖茨在1995年出版的《未来之路》一书中提道。

比尔·盖茨认为大语言模型是“自图形用户界面以来最重要的技术进步”,我们应把大语言模型视为新一代人机通信革命(表1)。人机交互界面意味着人类指挥终端的效率和体验,早期专业技术人员使用的命令行界面(CLI),是让人说“机器的语言”;之后Windows和iPhone上受教育大众使用的图形界面(GUI),以人类操作图形来控制机器;再到如今众多模型、软件采用对话式交互界面(CUI),让机器、程序使用“人类的母语”(自然语言、方言)交流,包括多模态交互方式,让冷冰冰的机器“拟人化”,变身数字人伴侣、生产力助手,走入服务行业,智商与情感的双轨进步,让AI突破“图灵测试”,成为人类社会的“新成员”。

MetaAI在WhatsApp、Messenger、Instagram上有28位AI虚拟角色,与人类用户社交,包括舞蹈爱好者、高尔夫职业球手、铁人三项运动员、手工艺专家、健身房闺蜜、烹饪大厨、水手、破案侦探搭档等虚拟人物。国内微博也上线了热门电视剧《长月烬明》《狂飙》中的AI虚拟人物,与粉丝微博、私信互动交流。终有一日虚拟角色将从线上走入线下,“具身智能体”带来的伦理影响颇值得深入研究。

机遇三:“智能云+智能端”协同计算,AI设备嵌入“小模型”

2024未来之路:大模型发展“十大机遇”1

AI云负责训练,AI终端负责推理,算力格局初显。目前AI写作、AI绘画、AI编程、AI生成视频、AI数字人、AI办公助手、AI营销助手、AI虚拟角色、智能驾驶等层出不穷的AIGC应用,预计将成为未来5年数字经济的新动能。每一次模型应用都是一次推理计算,虽然单次推理算力成本很低,但数亿用户进行数亿次推理时,推理算力的总成本将超过训练算力总成本。伴随爆款AIGC应用的出现,庞大的用户访问量持续推高推理计算成本,将带来“AI云-AI端”的算力分工与转移,英伟达、英特尔、ARM等芯片厂商,都在积极投入终端AI芯片产品研发,预计2024年消费电子市场上将会出现众多嵌入AI芯片的智能增强型个人电脑、手机、AR眼镜、家电等,“AI Everywhere”驱动的AI新终端,将会分担一部分推理算力任务,减轻AI云负载。

小模型正在拥有大模型的效果,以及硬件终端算力的良好适配性与功耗,终端小模型与云端大模型组成混合AI架构,AI PC/平板、AI手机、AI机器人、AR眼镜、AI可穿戴设备等一系列小型服务设备,也能跑得起压缩版“大模型”,多端小模型将融合感知、任务协同、共享记忆,形成一体化的“群体智能体”(模型矩阵)。微软27亿参数量的Phi-2,性能与Google Gemini Nano 2 相当或优于后者。这要归功于模型扩展和训练数据管理方面的新创新。

机遇四:多模态大模型,成为“生产力遥控器”

多模态大模型降低生产成本,激活指数级市场需求。多模态语言大模型逐步成为智能终端的决策器,将开启新一轮工业革命。我们把大语言模型视为新一代人机通信革命,当新一代“应用软件”(AI模型)与新一代“硬件终端”(机器人、AR眼镜等)加速融合后,下一轮工业革命大幕拉开。在供给侧,基于大模型的智能体变成人类的“生产力遥控器”。

2024未来之路:大模型发展“十大机遇”2

伴随AI芯片嵌入智能车、智能机器人、智能AR眼镜、智能家电等所有终端,人类个体在“人机协同”模式下能够同时指挥的生产资料规模大幅上升,例如商汤用50 000条路线、30种天气照明场景、280小时长的驾驶数据,研发出自动驾驶大模型DriveMLM。将图像、激光雷达信息、交通规则、乘客需求等多模态数据输入大模型,DriveMLM就能给出控制车辆的驾驶决策方案,并告诉你为什么要这么开(可解释性),遇到没有见过的场景时形成端到端的智能决策,将LLM语言决策输出转化为车辆控制信号,比如根据救护车、消防车、警车等特种车辆原因能够主动变道让行,也能够在赶时间时主动灵活超车(表2)。

又如特斯拉正在研发2万美元的擎天柱机器人,并最终搭载X.ai的大模型Grok,有望成为受工厂主、家庭主妇欢迎的“超级智能体”。斯坦福李飞飞教授团队的论文、中国智元机器人公司的机器人产品同时展示出,没有经过特定训练的工业机器手,能够通过视觉语言大模型,第一次就能实现复杂任务处理,体现出令人惊叹的“柔性操作”能力,从大模型到AGI,新一代柔性生产模式正在显现雏形。

高度自动化的“AI劳动力”在提升GDP的同时,将与各国人口数量脱钩,与能源、AI研发实力挂钩,这将彻底改变发达国家与发展中国家的供需模式和生产分工,同时人工智能产业的特点也会从高端人力密集转向重资产密集。

机遇五:更便宜的AI芯片价格,将加速AIGC应用创新规模化扩张

AI芯片已成为AI从业者的沉重“税负”,让AI算力成本回归社会公共服务的平民价格,是数字经济3.0可持续发展的关键。市场上AI算力的稀缺为少数芯片制造商带来巨大的市场控制权,并享受涨价带来的高额利润。据美国金融机构Raymond James透露,头部AI芯片公司的利润率可能高达1 000%。在《埃隆·马斯克传》中,马斯克提出“白痴指数”,从第一性原理(物理学)出发,计算成品总成本与基本原材料成本的比值,如果一个产品的白痴指数非常高,则可通过设计更高效的制造技术来大幅降低成本,例如传统火箭上一个组件的成本是1 000美元,而其铝材料成本只有100美元,那么可能是因为设计过于复杂或制造工艺过于低效。虽然我们不知道GPU的生产成本,但从经济学原理来看,在如此高额利润的刺激下,更多低价格的竞争对手(含国产AI芯片)将会涌现,让AI芯片回归公共基础设施的本质,因为水电基础服务不会比金子更贵,在AI芯片架构研发与生产工艺创新中,更多价值将逐步从芯片释放出来,向算力服务、模型服务、AI2.0应用转移。反之,长期过于昂贵的AI芯片价格,会让面向大众市场(to Consumer)的所有AIGC创新应用因昂贵的“芯片税”而衰败,无法形成“数字经济3.0”的创新浪潮。

机遇六:更便宜的能源,更大的模型产能

2024未来之路:大模型发展“十大机遇”3

算力消耗的能源是另一半AIGC创新应用必须分摊的成本,持续降低的能源成本,对AI2.0应用生态健康良性发展至关重要(表3)。以Meta研发的语言大模型LLaMA为例,训练LLaMA-65B (650亿参数量,属于中等规模)的耗电,以美国电价0.87元/度估算,需要约40万元人民币。而OpenAI的GPT-3耗电量高达1287兆瓦时,伴随大模型参数量、数据量的上涨,能源支出成本将会急剧上升,产业链最终将成本分摊到每一个AIGC应用、AI for Science科研项目、智能制造系统上,引发AI2.0应用的“成本门槛”压抑大众创新需求。

大模型产业数据分析显示,大语言模型的训练成本中,电力费用占比高达65%。当“万亿参数量”的GPT-4,以及更大规模参数量的GPT-5到来时,能源与算力成本将会扭曲商业逻辑,或让很多应用创业者望而却步。例证是,微软基于GPT-4推出的AI编程工具Copilot,每月用户付费10美元,而微软还要再“补贴”20美元给每个用户,全年亏损超过一亿美元,这是小型AI应用创业团队所无法承受的。OpenAI CEO Sam Altman有感而发:“人类的未来,取决于低成本的AI,和它带来的高效能源生产。”所以,微软与OpenAI都投资了Commonwealth Fusion Systems(美国)、ITERA(欧洲)的核聚变创新公司,同时与美国橡树岭国家实验室、欧洲实验室、大学、研究机构多方共同研发核聚变技术,以求不断降低能源成本。

上一篇 点击页面呼出菜单 下一篇