浅谈初中数学概念的教学

作者: 陈双玲

在初中数学教学中,加强概念的教学,正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题能力的关键。在新一轮课改理念的引领下,结合我的教学实践,就数学概念教学的有关问题与大家共同探讨。

一、新旧理念下数学概念教学模式的层次分析。

传统的数学概念教学大多采用“属+种差”的概念同化方式进行。通常分为以下几个步骤

1、揭示概念的本质属性,给出定义、名称和符号;

2、对概念的进行特殊分类,揭示概念的外延;

3、巩固概念,利用概念解决的定义进行简单的识别活动;

4、概念的应用与联系,用概念解决问题,并建立所学概念与其他概念间的联系。

这种教学过程简明,使学生可以比较直接地学习概念,节省时间,被称为是“学生获得概念的最基本方式”。但是,仅从形式上做逻辑分析让学生理解概念是远远不够的。数学概念具有过程——对象的双重性,既是逻辑分析的对象,又是具有现实背景和丰富寓意的数学过程。

二、新课改理念下的概念与法则的教学案例。

1、代数式概念

代数式(字母表示数)概念一直是学生学习代数过程中的难点,有很多学生学过后只能记住代数式的形式特征,不能理解字母表示数的意义。

(1)通过操作活动,理解具体的代数式

问题一:让学生用火柴棒按下面的方式搭正方形,并请填写好下表:

问题二:有一些矩形,长是宽的3倍,请填写下表:

通过以上两个问题,让学生初步体会“同类意义”的数表示的各种关系。

(2)探究阶段,体验代数式中过程。

针对活动阶段的情况,可提出一些问题让学生讨论探究:

①问题一中3n+1,与具体的数有什么样的关系?

②把各具体字母表示的式子作为一个整体,具有什么样的特征和意义?(需经反复体验、反思、抽象代数式特征:一种运算关系;字母表示一类数等)。

2、有理数加法法则

(1)运算操作:计算一个足球队在一场足球比赛时的胜负可能结果的各种

不同情形:

(+3)+(+2)——+5         (-2)+(-1)——-3

(+3)+(-2)——+1         (-3)+(+2)——-1

(+3)+ 0——+3        …………(其中每个和式中的两个有理数是上、下半场中的得分数)。

(2)探究规律:把以上算式作为整体综合进行特征分析:同号相加、异号相加、一个数与零相加等的过程和结果对照总结规律,理解运算意义。

三、两种教学模式下学生学习方式的对比分析。

与新课改理念相比,传统的教学模式下学生的学习缺少“活动”阶段,对概念的形成过程没有充分体验,学生数学概念的建立靠教师代替快体验、快抽象。

反映出的情况有:

(1)过快的抽象过程使得只能有一少部分学生进行有意义的学习,难以引发全体学生的学习活动,大部分学生理解不了数学概念,只能靠死记硬背。

(2)由教师代替学生快体验、快抽象出数学概念,即使是能跟随教师进行有意义学习的学生其学习活动也是不连贯的,建构的概念缺乏完整性。

四、新课改理念下数学概念教学的策略。

新课改理念下的数学概念教学是由学生活动、探究到对象、图式的学习过程,体现了数学知识形成的规律性。为此,我结合自己的教学实践对数学概念教学采取以下策略:

(1)教师要把“教”建立在学生“学”的活动中。

为了使学生建构完整的数学知识,首先要设计学生的学习活动。这需要教师创设问题情境,设计时要注意以下几个方面:①能揭示数学知识的现实背景和形成过程;②适合学生的学习水平,使学习活动能顺利展开;

(2)体现数学知识形成中的数学思维方法。

数学思维方法是知识产生的灵魂,把握数学知识形成中的数学思维方法,是学生展开思维、建构概念的主线。学生学习中要给予提示、建议并在总结中归纳。

(3)数学对象的建立需经多次反复。

一个数学概念由“探究”到“对象”的建立,有时既困难又漫长(如函数概念)。“探究”到“对象”的压缩、抽象需要经过多次反复,循序渐进,螺旋上升,直至学生真正理解。“对象”的建立要注意简练的文字形式和符号表示,使学生在头脑中建立起数学知识的直观结构形象。

综上所述,数学概念教学应努力通过揭示概念的形成、发展和应用的过程,培养学生的辩证唯物主义观念,完善学生的认知结构,发展学生的思维能力。只要我们遵循认识规律,注意概念教学的研究与实践,就不难提高数学的教学质量。